Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Bioresour Technol ; : 130764, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38718903

ABSTRACT

Abundant renewable resource lignocellulosic biomass possesses tremendous potential for green biomanufacturing, while its efficient utilization by Yarrowia lipolytica, an attractive biochemical production host, is restricted since the presence of inhibitors furfural and acetic acid in lignocellulosic hydrolysate. Given deficient understanding of inherent interactions between inhibitors and cellular metabolism, sufficiently mining relevant genes is necessary. Herein, 14 novel gene targets were discovered using clustered regularly interspaced short palindromic repeats interference library in Y. lipolytica, achieving tolerance to 0.35 % (v/v) acetic acid (the highest concentration reported in Y. lipolytica), 4.8 mM furfural, or a combination of 2.4 mM furfural and 0.15 % (v/v) acetic acid. The tolerance mechanism might involve improvement of cell division and decrease of reactive oxygen species level. Transcriptional repression of effective gene targets still enabled tolerance when xylose was a carbon source. This work forms a robust foundation for improving microbial tolerance to lignocellulose-derived inhibitors and revealing underlying mechanism.

2.
J Virol ; : e0157323, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572974

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and characterized by dysregulated immune response. Studies have shown that the SARS-CoV-2 accessory protein ORF7b induces host cell apoptosis through the tumor necrosis factor alpha (TNF-α) pathway and blocks the production of interferon beta (IFN-ß). The underlying mechanism remains to be investigated. In this study, we found that ORF7b facilitated viral infection and production, and inhibited the RIG-I-like receptor (RLR) signaling pathway through selectively interacting with mitochondrial antiviral-signaling protein (MAVS). MAVS439-466 region and MAVS Lys461 were essential for the physical association between MAVS and ORF7b, and the inhibition of the RLR signaling pathway by ORF7b. MAVSK461/K63 ubiquitination was essential for the RLR signaling regulated by the MAVS-ORF7b complex. ORF7b interfered with the recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) and the activation of the RLR signaling pathway by MAVS. Furthermore, interfering peptides targeting the ORF7b complex reversed the ORF7b-suppressed MAVS-RLR signaling pathway. The most potent interfering peptide V disrupts the formation of ORF7b tetramers, reverses the levels of the ORF7b-inhibited physical association between MAVS and TRAF6, leading to the suppression of viral growth and infection. Overall, this study provides a mechanism for the suppression of innate immunity by SARS-CoV-2 infection and the mechanism-based approach via interfering peptides to potentially prevent SARS-CoV-2 infection.IMPORTANCEThe pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and continues to be a threat to public health. It is imperative to understand the biology of SARS-CoV-2 infection and find approaches to prevent SARS-CoV-2 infection and ameliorate COVID-19. Multiple SARS-CoV-2 proteins are known to function on the innate immune response, but the underlying mechanism remains unknown. This study shows that ORF7b inhibits the RIG-I-like receptor (RLR) signaling pathway through the physical association between ORF7b and mitochondrial antiviral-signaling protein (MAVS), impairing the K63-linked MAVS polyubiquitination and its recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) to MAVS. The most potent interfering peptide V targeting the ORF7b-MAVS complex may reverse the suppression of the MAVS-mediated RLR signaling pathway by ORF7b and prevent viral infection and production. This study may provide new insights into the pathogenic mechanism of SARS-CoV-2 and a strategy to develop new drugs to prevent SARS-CoV-2 infection.

3.
Microbiol Spectr ; 12(4): e0341023, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38376366

ABSTRACT

The nucleocapsid protein of SARS-CoV-2 plays significant roles in viral assembly, immune evasion, and viral stability. Due to its immunogenicity, high expression levels during COVID-19, and conservation across viral strains, it represents an attractive target for antiviral treatment. In this study, we identified and characterized a single-stranded DNA aptamer, N-Apt17, which effectively disrupts the liquid-liquid phase separation (LLPS) mediated by the N protein. To enhance the aptamer's stability, a circular bivalent form, cb-N-Apt17, was designed and evaluated. Our findings demonstrated that cb-N-Apt17 exhibited improved stability, enhanced binding affinity, and superior inhibition of N protein LLPS; thus, it has the potential inhibition ability on viral replication. These results provide valuable evidence supporting the potential of cb-N-Apt17 as a promising candidate for the development of antiviral therapies against COVID-19.IMPORTANCEVariants of SARS-CoV-2 pose a significant challenge to currently available COVID-19 vaccines and therapies due to the rapid epitope changes observed in the viral spike protein. However, the nucleocapsid (N) protein of SARS-CoV-2, a highly conserved structural protein, offers promising potential as a target for inhibiting viral replication. The N protein forms complexes with genomic RNA, interacts with other viral structural proteins during virion assembly, and plays a critical role in evading host innate immunity by impairing interferon production during viral infection. In this investigation, we discovered a single-stranded DNA aptamer, designated as N-Apt17, exhibiting remarkable affinity and specificity for the N protein. Notably, N-Apt17 disrupts the liquid-liquid phase separation (LLPS) of the N protein. To enhance the stability and molecular recognition capabilities of N-Apt17, we designed a circular bivalent DNA aptamer termed cb-N-Apt17. In both in vivo and in vitro experiments, cb-N-Apt17 exhibited increased stability, enhanced binding affinity, and superior LLPS disrupting ability. Thus, our study provides essential proof-of-principle evidence supporting the further development of cb-N-Apt17 as a therapeutic candidate for COVID-19.


Subject(s)
COVID-19 , Nucleocapsid Proteins , Humans , SARS-CoV-2/genetics , DNA, Single-Stranded/pharmacology , COVID-19 Vaccines , Antiviral Agents/pharmacology
4.
ACS Appl Mater Interfaces ; 16(2): 2573-2582, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38179924

ABSTRACT

In this work, we investigate multistep ferroelectric polarization switching dynamics of a series of poly(vinylidene fluoride-trifluoroethylene)/polystyrene, P(VDF-TrFE)/PS, as active layers in ferroelectric capacitors with variable P(VDF-TrFE)/PS thickness ratios and a wide range of driving voltage frequencies (1-1000 Hz). The PS electret-like modulation effects on the depolarized field fluctuation are proven to be responsible for this multistep ferroelectric polarization switching process. To be specific, the switching current density peak splits into two peaks in both positive and negative voltage ranges according to the stimulus-response (S-R) data from the metal-ferroelectric-electret-metal capacitor driven by a periodic triangular voltage wave. The double-peak current trough appears when the transitorily suppressed ferroelectric polarization switching occurs while the discharge and recharge of the PS electret by external voltage brings a specific dynamic change in the electric field across ferroelectric (EFE). We also propose a theoretical model to simulate the ferroelectric polarization switching process at a current trough zone. This phenomenon provides new concepts on the electret-modulated multistep ferroelectric switching dynamics, and such switching mechanisms are critical for realizing reliable nonvolatile memory applications in flexible electronics.

5.
Anal Chem ; 96(1): 179-187, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38100653

ABSTRACT

Achieving accurate detection of different speciations of heavy metal ions (HMIs) in an aqueous solution is an urgent problem due to the different bioavailabilities and physiological toxicity. Herein, we nominated a novel strategy to detect HCrO4- and Cr(OH)2+ at a trace level via the electrochemical sensitive surface constructed by Co3O4-rGO modified with amino and carboxyl groups, which revealed that the interactions between distinct functional groups and different oxygen-containing groups of target ions are conducive to the susceptible and anti-interference detection. The detection sensitivities of 19.46 counts µg-1 L for HCrO4- and 13.44 counts µg-1 L for Cr(OH)2+ were obtained under optimal conditions, while the limits of detection were 0.10 and 0.12 µg L-1, respectively. Satisfactory anti-interference and actual water sample analysis results were obtained. A series of advanced optical techniques like X-ray photoelectron spectroscopy, X-ray absorption near-edge structure technology, and density functional theory calculations under an electric field demonstrated that chemical interactions between groups contribute more to the fixation of target ions than electrical attraction alone. The presence of oxygen-containing groups distinct from simple ionic forms was a critical factor in the selectivity and anti-interference detection. Furthermore, the valence cycle of Co(II)/(III) synergistically boosted the detection performance. This research provides a promising tactic from the microscopic perspective of groups' interactions to accomplish the precise speciation analysis of HMIs in the water environment.

6.
Viruses ; 15(12)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38140545

ABSTRACT

Severe COVID-19 patients exhibit impaired IFN-I response due to decreased IFN-ß production, allowing persistent viral load and exacerbated inflammation. While the SARS-CoV-2 nucleocapsid (N) protein has been implicated in inhibiting innate immunity by interfering with IFN-ß signaling, the specific underlying mechanism still needs further investigation for a comprehensive understanding. This study reveals that the SARS-CoV-2 N protein enhances interaction between the human SUMO-conjugating enzyme UBC9 and MAVS. Increased MAVS-UBC9 interaction leads to enhanced SUMOylation of MAVS, inhibiting its ubiquitination, resulting in the inhibition of phosphorylation events involving IKKα, TBK1, and IRF3, thus disrupting IFN-ß signaling. This study highlights the role of the N protein of SARS-CoV-2 in modulating the innate immune response by affecting the MAVS SUMOylation and ubiquitination processes, leading to inhibition of the IFN-ß signaling pathway. These findings shed light on the complex mechanisms utilized by SARS-CoV-2 to manipulate the host's antiviral defenses and provide potential insights for developing targeted therapeutic strategies against severe COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Signal Transduction , Sumoylation , Ubiquitination
8.
Horm Metab Res ; 55(12): 846-854, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918822

ABSTRACT

Previous studies showed conflicting results regarding the association between metabolic syndrome (MetS) and risk of lung cancer. We performed a systemic review and meta-analysis to determine the relationship between MetS and lung cancer incidence and mortality in adults. Longitudinal follow-up studies were identified by search of Medline, Embase, Cochrane Library, and Web of Science. By incorporating potential heterogeneity into the model, a randomized-effects model was selected to pool the results. Fourteen observational studies were included. Pooled results showed that MetS was associated with a higher risk of lung cancer incidence [risk ratio (RR): 1.15, 95% confidence interval (CI): 1.05 to 1.26, p=0.002; I2=89%). Subgroup analysis suggested that the association was not significantly affected by study country, design, sex of the participants, adjustment of smoking, or different study quality scores (p for subgroup difference all>0.05). The association was predominantly contributed by studies with MetS defined by the National Cholesterol Education Program Adult Treatment Panel-III rather than those with MetS defined by the International Diabetes Foundation criteria, and the association seemed to be stronger in studies with follow-up within 6 years than those over 6 years (p for subgroup difference=0.03 and 0.04, respectively). In addition, pooled results also showed that MetS was associated with a higher risk of lung cancer mortality (RR: 1.46, 95% CI: 1.19 to 1.79, p <0.001; I2=0%). In conclusion, in adult population, MetS may be a risk factor of lung cancer incidence and mortality.


Subject(s)
Lung Neoplasms , Metabolic Syndrome , Adult , Humans , Metabolic Syndrome/complications , Metabolic Syndrome/epidemiology , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Risk Factors , Incidence , Odds Ratio
9.
Heliyon ; 9(11): e21389, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37885709

ABSTRACT

Aim: To develop scientific, systematic and clinically applicable nursing-sensitive quality indicators for vaginal birth after cesarean in obstetrics, which provide a theoretical and clinical basis for monitoring and improving the nursing quality of vaginal birth after cesarean in China. Methods: A modified Delphi-consensus technique was used in this study. Based on literature retrieval published between January 2012 and December 2022 and group discussion, the preliminary nursing-sensitive quality indicators were selected using a structural-process-outcome model. Then a questionnaire was designed on the preliminary indicators. The modified Delphi method was used to conduct two rounds of expert consultation among 26 hospitals in China. The survey data of experts' opinions were collected and analyzed to determine the final nursing-sensitive quality indicators. The importance of indicators, rationality of calculation formula and operability of data collection were analyzed and discussed. Results: A total of 33 nursing-sensitive quality indicators were determined. The indicators were composed of 3-level ones, including 3 first-level indicators (structural, process and outcome indicators), 9 s-level ones and 33 third-level ones. The positive coefficients in the two rounds of expert consultation were 95.56 % and 97.67 %, respectively, and the authoritative coefficients were 0.88 and 0.94. The coefficients of variation ranged from 0.05 to 0.28. Conclusion: The nursing-sensitive quality indicators were successfully developed using the modified Delphi method. The indicators are scientific, systematic and clinically operable, and play an important role in improving the nursing quality for pregnant women with vaginal birth after cesarean.

10.
Chem Sci ; 14(36): 9678-9688, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37736653

ABSTRACT

Single-atom catalysts have been extensively utilized for electrocatalysis, in which electronic metal-support interactions are typically employed to stabilize single atoms. However, this neglects the metal-metal interactions of adjacent atoms, which are essential for the fine-tuning of selective sites. Herein, the high-loading of Ir single atoms (Ir SAs) (8.9 wt%) were adjacently accommodated into oxygen vacancy-rich Co3O4 nanosheets (Ir SAs/Co3O4). Electronic perturbations for both Ir single atoms and Co3O4 supports were observed under electronic metal-support and metal-metal interactions, thus generating Ir-O-Co/Ir units. Electrons were transferred from Co and Ir to O atoms, inducing the depletion of 3d/5d states in Co/Ir and the occupation of 2p states in O atoms to stabilize the Ir SAs. Moreover, the O atoms of Ir-O-Ir functioned as the main active sites for the electrocatalysis of As(iii), which reduced the energy barrier for the rate-determining step. This was due to the stronger electronic affinities for intermediates from reduction of As(iii), which were completely distinct from other coordinated O atoms of Co3O4 or IrO2. Consequently, the resultant Ir SAs/Co3O4 exhibited far more robust electrocatalytic activities than IrO2/Co3O4 and Co3O4 in the electrocatalysis of As(iii). Moreover, there was a strong orbital coupling effect between the coordinated O atoms of Ir SAs and the -OH of H3AsO3, thus exhibiting superior selectivity for As(iii) in contrast to other common heavy metal cations. This work offers useful insights into the rational design of intriguing SACs with high selectivity and stability for the electrocatalysis and electrochemical analysis of pollutants on an electronic level.

11.
Cell Biosci ; 13(1): 124, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400936

ABSTRACT

BACKGROUND: Cancer/testis (CT) antigens/genes are usually overexpressed in cancers and exhibit high immunogenicity, making them promising targets for immunotherapy and cancer vaccines. The role of serine protease PRSS56 in cancers remains unknown to date. METHODS: RNA sequencing studies were performed to screen CT genes in gastric cancer (GC) and colorectal cancer (CRC) cells exposed to DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-AZA-CdR). Bioinformatics analysis was conducted to analyze the correlation between PRSS56 expression and DNA methylation. Functional experiments were performed to explore the biological function of PRSS56 in GC and CRC. RESULTS: In this study, we identified the testis-specific serine proteases PRSS56 as a novel CT antigen. PRSS56 was frequently overexpressed in various cancers, especially in gastrointestinal cancer. PRSS56 expression was negatively associated with promoter DNA methylation level, and positively associated with gene body methylation level. PRSS56 expression was significantly activated in colorectal and gastric cancer cells exposed to DNA methyltransferase inhibitors. Importantly, our finding highlights that the decreased methylation level of the CpG site cg10242318 in the PRSS56 promoter region resulted in its overexpression in GC and CRC. Additionally, functional assays verified that PRSS56 overexpression activated PI3K-AKT signaling in GC and CRC. CONCLUSION: Serine protease PRSS56 is a novel CT antigen that is reactivated in cancers by promoter DNA hypomethylation. PRSS56 functions oncogenic roles in GC and CRC by activating of PI3K/AKT axis. Our results presented here represent the first data on the function of the serine protease PRSS56 in cancers.

12.
Micromachines (Basel) ; 14(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37420987

ABSTRACT

Many efforts have been devoted to the forecasting of the capillary force generated by capillary adsorption between solids, which is fundamental and essential in the fields of micro-object manipulation and particle wetting. In this paper, an artificial neural network (ANN) model optimized by a genetic algorithm (GA-ANN) was proposed to predict the capillary force and contact diameter of the liquid bridge between two plates. The mean square error (MSE) and correlation coefficient (R2) were employed to evaluate the prediction accuracy of the GA-ANN model, theoretical solution method of the Young-Laplace equation and simulation approach based on the minimum energy method. The results showed that the values of MSE of capillary force and contact diameter using GA-ANN were 10.3 and 0.0001, respectively. The values of R2 were 0.9989 and 0.9977 for capillary force and contact diameter in regression analysis, respectively, demonstrating the accuracy of the proposed predictive model. The sensitivity analysis was conducted to investigate the influence of input parameters, including liquid volume and separation distance, on the capillary force and contact diameter. The liquid volume and separation distance played dominant roles in affecting the capillary force and contact diameter.

13.
Biotechnol Bioeng ; 120(10): 3013-3024, 2023 10.
Article in English | MEDLINE | ID: mdl-37306471

ABSTRACT

The limited supply of reducing power restricts the efficient utilization of acetate in Yarrowia lipolytica. Here, microbial electrosynthesis (MES) system, enabling direct conversion of inward electrons to NAD(P)H, was used to improve the production of fatty alcohols from acetate based on pathway engineering. First, the conversion efficiency of acetate to acetyl-CoA was reinforced by heterogenous expression of ackA-pta genes. Second, a small amount of glucose was used as cosubstrate to activate the pentose phosphate pathway and promote intracellular reducing cofactors synthesis. Third, through the employment of MES system, the final fatty alcohols production of the engineered strain YLFL-11 reached 83.8 mg/g dry cell weight (DCW), which was 6.17-fold higher than the initial production of YLFL-2 in shake flask. Furthermore, these strategies were also applied for the elevation of lupeol and betulinic acid synthesis from acetate in Y. lipolytica, demonstrating that our work provides a practical solution for cofactor supply and the assimilation of inferior carbon sources.


Subject(s)
Metabolic Engineering , Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , Fermentation , Pentacyclic Triterpenes/metabolism , Acetates/metabolism
14.
Eur J Pediatr ; 182(6): 2597-2606, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36944782

ABSTRACT

This study aims to evaluate the efficacy of 0.01% atropine eye drops in preventing myopia shift and myopia onset in premyopic children. A prospective, randomized, double-masked, placebo-controlled, and crossover trial was conducted over 13 months. Sixty premyopic children aged 6-12 years with cycloplegic spherical equivalent refraction (SER) > - 0.75 D and ≤ + 0.50 D in both eyes were assigned in a 1:1 ratio to receive one drop of 0.01% atropine or placebo once nightly for 6 months (period 1), followed by a 1-month recovery period. Then, the 0.01% atropine group was crossed over to the placebo group, and the latter was crossed over to the 0.01% atropine group for another 6 months (period 2). The primary outcomes were changes in SER and axial length (AL), and the secondary outcomes were the proportion of myopia onset (SER ≤ - 0.75D) and fast myopic shift (change in SER ≤ - 0.25D) in the two periods. Generalized estimating equation (GEE) model performed a statistically significant treatment effect of 0.01% atropine compared with placebo (pSER = 0.02, pAL < 0.001), with a mean SER and AL difference of 0.20D (- 0.15 ± 0.26D vs. - 0.34 ± 0.34D) and 0.11 mm (0.17 ± 0.11 mm vs. 0.28 ± 0.14 mm) in period 1, and 0.17D (- 0.18 ± 0.24D vs. - 0.34 ± 0.31D) and 0.10 mm (0.15 ± 0.15 mm vs. 0.24 ± 0.11 mm) in period 2. The GEE model showed that the proportion of myopia onset (p = 0.004) and fast myopic shift (p = 0.009) was significantly lower in the 0.01% atropine group than that in the placebo group. The period effect was not statistically significant (all p > 0.05). A total of 0.01% atropine significantly prevented myopic shift, axial elongation, and myopia onset in premyopic schoolchildren in central Mainland China. CONCLUSION: Within the limits of only two consecutive 6-month observation period, 0.01% atropine eye drops effectively prevented myopic shift, axial elongation, and myopia onset in premyopic children. TRIAL REGISTRATION: This trial was registered in the Chinese Clinical Trial Registry (Registration number: ChiCTR2000034760). Registered 18 July 2020. WHAT IS KNOWN: • Minimal studies on interventions for pre-myopia, despite the International Myopia Institute stating that preventing myopia is an "even more valuable target" for science and practice than reducing progression after onset. WHAT IS NEW: • A total of 0.01% atropine eye drops may safely and effectively reduce the proportion of myopia onset and fast myopic shift in premyopic schoolchildren.


Subject(s)
Atropine , Myopia , Humans , Child , Atropine/therapeutic use , Cross-Over Studies , Prospective Studies , Myopia/diagnosis , Myopia/etiology , Myopia/prevention & control , Ophthalmic Solutions/therapeutic use , Disease Progression
15.
Cell Prolif ; 56(6): e13423, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36808651

ABSTRACT

Epithelial-mesenchymal transition (EMT) or mesenchymal-epithelial transition (MET) plays critical roles in cancer metastasis. Recent studies, especially those based on single-cell sequencing, have revealed that EMT is not a binary process, but a heterogeneous and dynamic disposition with intermediary or partial EMT states. Multiple double-negative feedback loops involved by EMT-related transcription factors (EMT-TFs) have been identified. These feedback loops between EMT drivers and MET drivers finely regulate the EMT transition state of the cell. In this review, the general characteristics, biomarkers and molecular mechanisms of different EMT transition states were summarized. We additionally discussed the direct and indirect roles of EMT transition state in tumour metastasis. More importantly, this article provides direct evidence that the heterogeneity of EMT is closely related to the poor prognosis in gastric cancer. Notably, a seesaw model was proposed to explain how tumour cells regulate themselves to remain in specific EMT transition states, including epithelial state, hybrid/intermediate state and mesenchymal state. Additionally, this article also provides a review of the current status, limitations and future perspectives of EMT signalling in clinical applications.


Subject(s)
Epithelial-Mesenchymal Transition , Stomach Neoplasms , Humans , Transcription Factors , Signal Transduction , Cell Differentiation , Neoplasm Metastasis
16.
Anal Chem ; 95(7): 3666-3674, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36656141

ABSTRACT

Traditional nanomodified electrodes have made great achievements in electrochemical stripping voltammetry of sensing materials for As(III) detection. Moreover, the intermediate states are complicated to probe because of the ultrashort lifetime and complex reaction conditions of the electron transfer process in electroanalysis, which seriously hinder the identification of the actual active site. Herein, the intrinsic interaction of highly sensitive analytical behavior of nanomaterials is elucidated from the perspective of electronic structure through density functional theory (DFT) and gradient boosting regression (GBR). It is revealed that the atomic radius, d-band center (εd), and the largest coordinative TM-N bond length play a crucial role in regulating the arsenic reduction reaction (ARR) performance by the established ARR process for 27 sets of transition-metal single atoms supported on N-doped graphene. Furthermore, the database composed of filtered intrinsic electronic structural properties and the calculated descriptors of the central metal atom in TM-N4-Gra were also successfully extended to oxygen evolution reaction (OER) systems, which effectively verified the reliability of the whole approach. Generally, a multistep workflow is developed through GBR models combined with DFT for valid screening of sensing materials, which will effectively upgrade the traditional trial-and-error mode for electrochemical interface designing.

17.
Cell Death Discov ; 9(1): 17, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36681667

ABSTRACT

We previously reported that IGFBP7 plays a role in maintaining mRNA stability of oncogenic lncRNA UBE2CP3 by RNA-RNA interaction in gastric cancer (GC). Clinical cohort studies had implied an oncogenic role of IGFBP7 in GC. However, the molecular mechanism of IGFBP7 in GC progression remains unknown. In this study, clinical analysis based on two independent cohorts showed that IGFBP7 was positively associated with poor prognosis and macrophage infiltration in GC. Loss-of-function studies confirmed the oncogenic properties of IGFBP7 in regulating GC cell proliferation and invasion. Mechanismly, IGFBP7 was highly expressed in cancer-associated fibroblasts (CAF) and mesenchymal cells, and was induced by epithelial-to-mesenchymal transition (EMT) signaling, since its expression was increased by TGF-beta treatment and reduced by overexpression of OVOL2 in GC. RNA sequencing, qRT-PCR, ELISA assay showed that IGFBP7 positively regulated FGF2 expression and secretion in GC. Transcriptome analysis revealed that FGFR1 was downregulated in M1 polarization but upregulated in M2 polarization. Exogenous recombinant IGFBP7 treatment in macrophages and GC cells further identified that IGFBP7 promotes tumor associated macrophage (TAM) polarization via FGF2/FGFR1/PI3K/AKT axis. Our finding here represented the first evidence that IGFBP7 promotes GC by enhancing TAM/M2 macrophage polarization through FGF2/FGFR1/PI3K/AKT axis.

18.
Anal Chem ; 95(8): 4104-4112, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36688529

ABSTRACT

Significant progress has been made in nanomaterial-modified electrodes for highly efficient electroanalysis of arsenic(III) (As(III)). However, the modifiers prepared using some physical methods may easily fall off, and active sites are not uniform, causing the potential instability of the modified electrode. This work first reports a promising practical strategy without any modifiers via utilizing only soluble Fe3+ as a trigger to detect trace-level As(III) in natural water. This method reaches an actual detection limit of 1 ppb on bare glassy carbon electrodes and a sensitivity of 0.296 µA ppb-1 with excellent stability. Kinetic simulations and experimental evidence confirm the codeposition mechanism that Fe3+ is preferentially deposited as Fe0, which are active sites to adsorb As(III) and H+ on the electrode surface. This facilitates the formation of AsH3, which could further react with Fe2+ to produce more As0 and Fe0. Meanwhile, the produced Fe0 can also accelerate the efficient enrichment of As0. Remarkably, the proposed sensing mechanism is a general rule for the electroanalysis of As(III) that is triggered by iron group ions (Fe2+, Fe3+, Co2+, and Ni2+). The interference analysis of coexisting ions (Cu2+, Zn2+, Al3+, Hg2+, Cd2+, Pb2+, SO42-, NO3-, Cl-, and F-) indicates that only Cu2+, Pb2+, and F- showed inhibitory effects on As(III) due to the competition of active sites. Surprisingly, adding iron power effectively eliminates the interference of Cu2+ in natural water, achieving a higher sensitivity for 1-15 ppb As(III) (0.487 µA ppb-1). This study provides effective solutions to overcome the potential instability of modified electrodes and offers a practical sensing platform for analyzing other heavy-metal anions.

19.
Pain ; 164(1): 119-131, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35507368

ABSTRACT

ABSTRACT: Nerve trauma-induced alternations of gene expression in the neurons of dorsal root ganglion (DRG) participate in nerve trauma-caused nociceptive hypersensitivity. Transcription factors regulate gene expression. Whether the transcription factor E74-like factor 1 (ELF1) in the DRG contributes to neuropathic pain is unknown. We report here that peripheral nerve trauma caused by chronic constriction injury (CCI) of unilateral sciatic nerve or unilateral fourth lumbar spinal nerve ligation led to the time-dependent increases in the levels of Elf1 mRNA and ELF1 protein in injured DRG, but not in the spinal cord. Preventing this increase through DRG microinjection of adeno-associated virus 5 expressing Elf1 shRNA attenuated the CCI-induced upregulation of matrix metallopeptidase 9 (MMP9) in injured DRG and induction and maintenance of nociceptive hypersensitivities, without changing locomotor functions and basal responses to acute mechanical, heat, and cold stimuli. Mimicking this increase through DRG microinjection of AAV5 expressing full-length Elf1 upregulated DRG MMP9 and produced enhanced responses to mechanical, heat, and cold stimuli in naive mice. Mechanistically, more ELF1 directly bond to and activated Mmp9 promoter in injured DRG neurons after CCI. Our data indicate that ELF1 participates in nerve trauma-caused nociceptive hypersensitivity likely through upregulating MMP9 in injured DRG. E74-like factor 1 may be a new target for management of neuropathic pain.


Subject(s)
Metalloproteins , Neuralgia , Animals , Mice , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Matrix Metalloproteinase 9 , Metalloproteins/metabolism , Neuralgia/metabolism , Neurons/metabolism , Nociception
20.
Aging (Albany NY) ; 15(4): 982-1003, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36566020

ABSTRACT

Aging of the vascular system is the main cause of many cardiovascular diseases. The structure and function of the blood vessel wall change with aging. To prevent age-related cardiovascular diseases, it is essential to understand the cellular heterogeneity of vascular wall and changes of cellular communication among cell subpopulations during aging. Here, using published single-cell RNA sequencing datasets of young and old monkey aortas, we analyzed the heterogeneity of vascular endothelial cells and smooth muscle cells in detail and identified a distinct endothelial cell subpopulation that involved in vascular remodeling and calcification. Moreover, cellular communication that changed with aging was analyzed and we identified a number of signaling pathways that associated with vascular aging. We found that EGF signaling pathway play an essential role in vascular remodeling and calcification of aged aortas. This work provided a better understanding of vascular aging and laid the foundation for prevention of age-related vascular pathologies.


Subject(s)
Calcinosis , Cardiovascular Diseases , Vascular Calcification , Animals , Cardiovascular Diseases/metabolism , Endothelial Cells/metabolism , Vascular Remodeling , Muscle, Smooth, Vascular/metabolism , Calcinosis/metabolism , Aorta/metabolism , Signal Transduction , Primates , Myocytes, Smooth Muscle/metabolism , Single-Cell Analysis , Vascular Calcification/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...